Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report on a search for sub-GeV dark matter (DM) particles interacting with electrons using the DAMIC-M prototype detector at the Modane Underground Laboratory. The data feature a significantly lower detector single rate (factor 50) compared to our previous search, while also accumulating a 10 times larger exposure of . DM interactions in the skipper charge-coupled devices (CCDs) are searched for as groups of two or three adjacent pixels with a total charge between 2 and . We find 144 candidates of and 1 candidate of , where 141.5 and 0.071, respectively, are expected from background. With no evidence of a DM signal, we place stringent constraints on DM particles with masses between 1 and interacting with electrons through an ultralight or heavy mediator. For large ranges of DM masses below , we exclude theoretically motivated benchmark scenarios where hidden-sector particles are produced as a major component of DM in the Universe through the freeze-in or freeze-out mechanisms.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract The DArk Matter In CCDs at Modane (DAMIC-M) experiment is designed to search for light dark matter (mχ< 10 GeV/c2) at the Laboratoire Souterrain de Modane (LSM) in France. DAMIC-M will use skipper charge-coupled devices (CCDs) as a kg-scale active detector target. Its single-electron resolution will enable eV-scale energy thresholds and thus world-leading sensitivity to a range of hidden sector dark matter candidates. A DAMIC-M prototype, the Low Background Chamber (LBC), has been taking data at LSM since 2022. The LBC provides a low-background environment, which has been used to characterize skipper CCDs, study dark current, and measure radiopurity of materials planned for DAMIC-M. It also allows testing of various subsystems like readout electronics, data acquisition software, and slow control. This paper describes the technical design and performance of the LBC.more » « less
-
Abstract Data collected so far by the Pierre Auger Observatory have enabled major advances in ultra-high energy cosmic ray physics and demonstrated that improved determination of masses of primary cosmic-ray particles, preferably on an event-by-event basis, is necessary for understanding their origin and nature. Improvement in primary mass measurements was the main motivation for the upgrade of the Pierre Auger Observatory, called AugerPrime. As part of this upgrade, scintillator detectors are added to the existing water-Cherenkov surface detector stations. By making use of the differences in detector response to the electromagnetic particles and muons between scintillator and water-Cherenkov detectors, the electromagnetic and muonic components of cosmic-ray air showers can be disentangled. Since the muonic component is sensitive to the primary mass, such combination of detectors provides a powerful way to improve primary mass composition measurements over the original Auger surface detector design. In this paper, the so-called Scintillator Surface Detectors are discussed, including their design characteristics, production process, testing procedure and deployment in the field.more » « lessFree, publicly-accessible full text available August 1, 2026
An official website of the United States government
